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The characteristics are studied of short surface waves superimposed upon, and inter- 
acting with, a long, finite-amplitude dominant wave of frequency N. An asymptotic 
analysis allows the numerical investigation of Longuet-Higgins (1978) to be extended 
to higher superharmonic perturbations, and it is found that, although they are distorted 
by the underlying finite-amplitude wave, gravity wavelets continue to propagate 
freely provided the dominant wave does not break. Capillary waves can, however, be 
blocked by short, steep, non-breaking gravity waves, so that in a wind-wave tank at 
short fetch and high wind speed, freely travelling gravity-capillary waves can be 
erased by the successive dominant wave crests. 

A train or group of short gravity waves suffers modulations 6k in its local wave- 
number because of the straining of the long wave, and large modulations C6k in its 
apparent frequency measured at a fixed point (where C is the long wave phase speed), 
largely because of the Doppler shifting produced by the dominant wave orbital 
velocity. The spectral signatures of a wave train are calculated by stationary phase 
and are found to have maxima at  the upper wavenumber or frequency in the range. 
If an ensemble of short-wave groups is sampled at  a given frequency f at a fixed point, 
the signal is derived from groups with a range of intrinsic frequencies v, but is domi- 
nated by those at  the long-wave crest for which f = u + k . uo, where uo is the orbital 
velocity of the dominant wave. The apparent phase speed measured by a pair of such 
probes is the sum of the propagation speed c of the wavelet and the orbital velocity uo 
of the long wave. When f / N  is large, the apparent phase speed approaches uo, inde- 
pendent off. These results are consistent with measurements by Ramamonjiarisoa & 
Giovanangeli (1978) and others in which the apparent phase speed a t  high frequencies 
is found to be independent of the frequency - the measurements do not therefore 
imply a lack of dispersion of short gravity waves on the ocean surface. 

1. Introduction 
Recently, there have been several sets of measurements seeking to determine, as 

a function of frequency, the phase velocity of the shorter components of a field of 
wind-generated waves. One method, apparently the most direct, involves measuring 
the surface displacement at  two points separated by a distance Ax in the wind 
direction, filtering the two signals at  a fixed frequency f and finding the time delay At 
required for maximum correlation. The phase speed c at  this frequency f is then taken 
as AxlAt. Measurements of this kind have been made in laboratory wind-wave tanks 
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FIGURE 1. Apparent phase speeds of frequency components of wind waves measured by Lske & 
Yuen (1978) at a fetch of 30 ft and a mean wind speed of 35 ft 5-1. fdom represents the frequency 
of the spectral peak; the solid curve is the linear dispersion relation, and the broken curve is this 
dispersion relation with an added wind drift contribution’ of 0.61 ft, s-l independent of fre- 
quency. 

by Ramamonjiarisoa (1974;seealsoRamamonjiarisoa &Coantic (1976)) and by Lake & 
Yuen (1978); they have yielded the striking result shown in figure 1 that the apparent 
phase speed of wave components with frequencies higher than that of the spectral 
peak is very nearly independent of the frequency. The gravity waves seem to be non- 
dispersive ! The same kind of measurement in the field, made by Ramamonjiarisoa & 
Giovanangeli (1978) and summarized in figure 2, suggests that here also the phase 
velocity of short wavelets becomes independent of frequency but now only for 
frequencies beyond some multiple of that of the spectral peak. 

These results are indeed very curious and quite inconsistent with the linear dis- 
persion relation c = g / c  for short gravity waves. Ramanonjiarisoa (1974) has con- 
sidered the effects of both a finite angular spread of the short waves and a wind-induced 
mean drift near the surface, but neither alone nor the two in combination is capable of 
reconciling the measurements with linear theory. To add to the confusion, Doppler 
radar measurements by Plant & Wright (1979) give no hint of this effect. Though 
covering only a rather small frequency range (2.6 to 4.8 Hz, with a spectral peak at 
3-3 Hz), their measurements under conditions similar to those of Lake & Yuen gave 
phase speeds consistent with the usual dispersion relation after allowance for the 
wind-induced mean surface drift. More recent measurements by Huang et al. (1980) 
of the simultaneous slope and time derivative of the surface displacement also agree 
with the classical dispersion relation, though the propagation of harmonics of the basic 
wave at  its phase speed is also observed. 
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FIGURE 2. Measurements by Ramamonjiarisoa & Giovanengeli (1978) under two different field 
conditions. The solid curve again represents the linear dispersion relation ; the broken curve 
includes a correction for angular spread of the waves, proportional to cost 8. 0, U1, = 8 m 5-l; 
0, U,, = 10-13 ms-l. AX = 3 m. 

Nevertheless, so clear were the results shown in figure 1 that Lake & Yuen (1978) 
were led to propose that ‘a non-linear wind-wave system can be completely charac- 
terised, to  a good first approximation, by a single non-linear wave train having a 
carrier frequency equal to that of the dominant frequency in the wind-wave spec- 
trum. , . the spectral components (being) bound wave components of a single dominant 
wave and.. .not a random collection of free waves, each of which obeys the usual 
dispersion relation’. Though figure 1,  taken at face value, certainly suggests this 
proposition, the dynamical reasons for it are obscure. If it is true, why are short, free 
waves suppressed, or unable to exist, or perhaps unable to be generated by the wind 
in the presence of a relatively steep, longer dominant wave? If it is false, how does one 
account for the measurements of figures 1 and 21 The matter is clearly a basic one that 
demands resolution. 

A convenient starting point for the enquiry is provided by the precise numerical 
calculations of Longuet-Higgins ( 1  978) on the superharmonic perturbations of finite- 
amplitude gravity waves. This work was based upon a general analytical and numerical 
method developed by Longuet-Higgins & Cokelet (1976) for calculating the deforma- 
tion of the free surface under gravity of a two-dimensional irrotational motion that is 
time dependent and periodic in the horizontal co-ordinate. No restrictions on slope are 
involved. In his 1978 study, Longuet-Higgins investigated the normal mode pertur- 
bations of a finite-amplitude gravity wave for scales that are smaller than that of the 
basic wave; in particular, those having an integral number of waves in this interval. 
When the steepness of the fundamental is small, the normal modes simply assume the 
form of freely travelling waves distorted slightly by the basic wave. As the steepness 
increases, the frequency of each normal mode perturbation decreases somewhat as 
shown in figure 3, but the modification is slight. Note that, in figure 3, thefrequenciesa 
are observed in a frame of reference moving with the basic wave, that in this figure n 
is the mode number (the number of perturbation wavelengths in the basic wavelength) 
and that negative values of n specify waves moving in the opposite direction. The eigen- 
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FIGURE 3. Calculations by Longuet-Higgim (1978) on the frequencies of normal mode pertur- 
bations to 8 finite-amplitude gravity wave as functions of the dimensionless amplitude ak of 
the unperturbed wave. 

functions for the various modes are shown in figure 4. For relatively large positive n, 
the disturbance amplitudes are greatest at  the crests and the local wavelength there 
is least. Even for a basic wave slope as extreme as 0.4 (steep laboratory wind-generated 
waves have slopes only in the range 0.2-0.3), there is no hint of the non-existence of 
travelling normal modes or of their phase velocity approaching that of the fundamen- 
tal (a -+ 0) in this frame of reference. These results then offer no support to the 
contention of Lake & Yuen that finite-amplitude wave systems in the ocean are non- 
dispersive; the higher modes are travelling waves superimposed on the basic non- 
linear wave and distorted by it in both magnitude and local wavelength, but still 
propagating with a characteristic frequency. 

There remains the (distant) possibility that even higher modes may show a different 
behaviour ; this will be investigated next using the asymptotic techniques appropriate 
to short waves interacting with much longer ones. There is also the possibility that 
capillarity effects of the short waves may have an important influence at least under 
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FIQURE 4. Normal modes at the dimensionless amplitude ak = 0-2 
calculated by Longuet-Higgins (1978). 

conditions, when the waves influenced by capillarity may have 
frequencies only about three times that of the spectral peak. This second possibility 
will be found to be real and a part of the difference between laboratory and field 
results shown in figures 1 and 2. 
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2. Short gravity wave trains on a finite-amplitude long wave 
Consider a train of short waves superimposed upon and interacting with a long, 

steady finite-amplitude wave moving with phase velocity C. In a frame of reference 
moving with the long wave, the distribution of the tangential surface velocity u(s) 
associated with the long wave itself is steady and specified by 

d ( s )  = c2-2gg ,  ( 2 . 1 )  

where g is the surface elevation of the basic wave above mean water level. At  the long 
wave crest, the magnitude u(s) is a minimum, decreasing to zero as the Stokes 
limiting form is approached. 

The short waves propagate along this curved moving surface and, if the ratio of 
long-to-short wavelengths is sufficiently great, the local dispersion relation can be 
obtained by a simple analysis. In the vicinity of some point P a t  the surface of the 
undisturbed wave, let n be the local normal outwards and 8 the tangential co-ordinate. 
If the wave perturbation is represented by a displacement q (s, t )  in the direction of n 
and the associated velocity perturbation v(s, n, t )  = V#‘, the surface boundary condi- 
tion of constant pressure is that 

+g(g+1;1cos8) = const., 

where 8 is the undisturbed surface slope and the condition is applied at n = 7. Now in 
the second term, 

correct to the first order, and in terms of the stream function \fp of the basic flow 

au a2\ r  a2Y i a\fp u -=-=--=--=- 
an an2 as2 2 R i h  2R’ 

since s is locally in the direction of Y = const. and where R is the local radius of 
curvature of the mean surface, a streamline. A t  the crests, R < 0. Consequently, 
correct to the first order in the short-wave slope, the condition (2 .2 )  becomes 

a$’ u2 
at as R 

+ #u2+ u- + - 7 + g ( g +  q cOs 8 )  = const., 

to be applied a t  the mean free surface, and, after subtraction of (2 .1) ,  we have for the 
short-wave fluctuations 

( $ + u g ) # ’ + ( g c o s 8 + u 2 / R ) q  = 0, ( 2 . 3 )  

on the surface n = 0. Specification of the perturbation motion is completed by the 
linear kinematic boundary condition at the mean surface 
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FIQURE 5. Definition sketch. 

together with Laplace's equation for qS. These equations are precisely analogous with 
those for a level mean surface with current u, except that the gravitational acceleration 

(2.5) 
g is replaced by 

The effective acceleration due to gravity is then simply the component normal to the 
undisturbed surface plus the centripetal acceleration. Accordingly, the local intrinsic 
frequency is 

where k is the local wavenumber magnitude. The local wave energy density 

9' = g'(s) = g cos 8 + u2/R. 

= ((9 cos 0 + u2/R) k} t ,  (2 .6 )  

= (2k)-lpa2a2, (2 .7 )  

(2 .8 )  

where a is the wave amplitude. If capillarity becomes important, then 

a = (g'k + yk3)4, 

where y is the surface tension divided by water density. 

long wave is specified by the kinematic conservation equation 
The distribution of the wavenumber of the short wave with respect to phase of the 

ak/at+V(a+k.u) = 0, 

together with (2 .6 )  for pure gravity waves or (2 .8)  if capillarity is important. Since 
in figure 5 the short-wave pattern is steady relative to the long-wave profile, the 
frequency of short waves passing a given phase point on the long waves is constant: 

(2 .9)  

where a is the angle between the local wavenumber and u(8) (in the plane of figure 5 )  
and the suffix zero specifies properties of the short waves at the point where C = 0 and 
u(s) = C. Further, since the short-wave pattern is independent of y (perpendicular to 
the plane of figure 5), and V x k = 0,  

k, = const. = k sin a = k, sin a,. 

-a+ku(s)cosa = no = -u,+k,Ccosa,, 

Consequently from (2 .9 ) ,  
- a + (k2 - kz sina a,}* u(s)  = no. (2.10) 

It is easy to see from (2 .9)  that the only short waves with no = 0 (so that the velocity 
of points of constant phase in the plane of figure 5 is equal to C) are those highly oblique 
to the basic wave. For, if no = 0: 
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FIGURE 6. A geometrical construction illustrating the variations in wavenumber 
of short gravity waves with respect to phase of a long wave. 

where K is the primary wavenumber. All other short-wave components have no > 0 
and a phase velocity projected on this plane that is less than C. 

Simple algebraic expressions can be derived from (2.9) together with the dispersion 
relation cr = (g’k)t for the distributions of local wavenumber, intrinsic frequency, etc., 
in the case a = 0 corresponding to Longuet-Higgins’ (1978) calculations. The substi- 
tution k = a2 /g ‘  in (2.9) when a = 0 gives a quadratic equation for a(s)  in terms of 

(2.11) 

where g(s) = g’(s)/go, f(s) = u(s)/C and /3 = C/C, $ 1. 
The distribution of local wavenumber is 

& ) P o  = [g(s)l-’ ( w / f J o ) 2 .  (2.12) 

The distribution of short-wave energy density is specified by the action conser- 
vation law - in a frame of reference moving with the long waves, the action density is 
independent of time and the flux of action is constant. Thus 

[u(s) - c,(s)] E / U  = const. = (C- #co) Eo/v0 ,  

whence J w ) / E o  = (B- { B f b )  (+o) - 8s(s))-l (a/aoo)2, (2.13) 

and, from (2.7), the mean-square short-wave amplitude varies as 

(a(s)/ao)2 = [g(s)l-l E(s)/Eo.  (2.14) 

Detailed numerical values of these ratios for various steepnesses of the fundamental 
wave can be calculated from the profile shapes. It is sufficient for our present purposes 
to note that these asymptotic expressions agree well with Longuet-Higgins’ (1978) 
calculations for ratios of long to short wavelength (his n) as small as 4. 

When the primary wave has small steepness, AK, 5 = A cos Kx and it can be shown 
simply that f and g both are of the form ( 1  - AK cos Kx), correct to the first order, 
with minima at  the crests. The ratio f / g  differs from unity only by a quantity of order 
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(RK)2; consequently the variations in intrinsic frequency of the short wave over the 
long wave are, from (2.1 I ) ,  also of only second order in thelong-waveslope. In  contrast, 
the wavenumber ratio varies as (1 + A K  cosKz) from (2.12), with a maximum at the 
crests and a minimum at  the troughs; the short-wave energy density ratio varies as 
( 1 + A K  cos K z )  from (2.13) and the mean-square amplitude ratio as (1 + 2AK cos Kz) .  

In  a long wave of finite amplitude, the modulations in wavenumber of the short 
wave can be illustrated by the simple geometrical construction shown in figure 6. 
From equation (2.10) the difference between (k2- kesin2a0)*u(s) and cr is constant 
along the long-wave profile. The intrinsic frequency cr changes little between crest and 
trough, but a t  the crest, where u is a minimum, k is a maximum k,,,. As the steepness 
of the primary wave increases, the velocity urnin at  the crest decreases and so does the 
slope of the lowest solid line in figure 6, so that k,,, increases. But provided urnin is 
not zero (the Stokes limiting form with a sharp crest), k is everywhere defined on the 
profile and everywhere finite. 

The results of this section can be regarded as extending those of Longuet-Higgins 
(1978) to higher mode number disturbances of a finite-amplitude wave and also the 
earlier results of Longuet-Higgins & Stewart (1960), limited to long waves of small 
slope, by removing this restriction. Except when the long wave has a limiting form 
with a 120’ angle a t  the crest (a highly unstable configuration for other reasons aswell), 
short-wave perturbations, though possibly substantially distorted in amplitude and 
local wavenumber, still propagate relative to the long-wave profile. Though their 
coupling with the wind will undoubtedly be modified (in perhaps very interesting 
ways) by their modulations in amplitude and local wavelengths, there is no reason to 
suppose that it is destroyed. In  short, we are unable to find any dynamical support 
for the Lake-Yuen proposition, a t  least where gravity waves are concerned. 

3. Capillary wave blockage 
At laboratory scales, on the other hand, the situation is often very different. In most 

wind-wave tanks in which the fetch is limited to 10 or 20 m, the dominant wavelength 
is frequently in the range 10-30 cm while, at the wind speeds of order 10 m s-l used by 
Ramamonjiarisoa (1974) and Lake & Yuen (1978) the steepness of the dominant wave 
is large. The wave system is characterized by the frequent appearance of parasitic 
capillaries ahead of, and travelling with, the dominant wave crests (Longuet-Higgins 
1963; Phillips 1977) and by breaking of a substantial fraction of the dominant wave 
crests. To the eye, the waves certainly look much less dispersive than are the larger- 
scale wave systems in the field - ‘freely’ propagating short components moving more 
slowly than the dominant waves are difficult to discern if they are present at all. One 
can often see short waves travelling obliquely to the wind such that points of constant 
phase move in the wind direction at  a speed about equal to that of the dominant wave. 
To this extent, visual observations are consistent with the measurements of Ramamon- 
jiarisoa and of Lake & Yuen. 

Part of the reason for the absence of shorter, slower moving components may be that 
they are simply destroyed by the frequent breaking regions that sweep across the 
surface, catching them up. The microscale breaking process induced by surface wind 
drift (Banner & Philiips 1974) can suppress short-wave components but it is unlikely 
to be significant in this situation since the wind drift layer itself is disrupted by the 
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FIGURE 7.  The modification of figure 6 to include the effect of capillarity. 

frequent breaking events. More important is likely to be a phenomenon of capillary 
blockage in which, with a dominant wave of sufficient steepness (though not neces- 
sarily breaking) short dispersive components are unable to propagate past the 
dominant wave crest. Any such components that may be generated by the wind are 
therefore swept up by each long-wave crest. 

The kinematics of the process is illustrated in figure 7,  a simple modification of 
figure 6 to include capillarity. In capillary-gravity waves a - kj- when k B (g/y)) .  
As a group of such waves approaches a crest, u(s )  decreases. In  figure 7 ,  the asymptotic 
slope of the solid line is proportional to u(s )  and, as the slope decreases, in order to keep 
the difference no constant, the short wavenumber increases. However, when the slopes 
of the curves a(k) and ( k 2 -  k$sin2a)tu(s) become equal, the component of the group 
velocity a a l a k  of the short waves down the face of the long wave just  balances the 
convection up-slope towards the crest. For a t  this point, when k = k,, say, 

ac a - = c = - {k2  - k$ sin2 a}1 u ( s )  ak L3 ak 

= u(s)/cos a,, (3.1) 

where a,,, is the angle between the short waves and the long at  this point and since 
k, sin a. = km sin a,. From figure 7, i t  is clear that if u ( s )  decreases further (closer to 
the dominant wave crest) there is no real solution for k .  The wave pattern is confined 
to  the region ahead of the blockage point specified by (3.1). In physical terms, the 
capillary blockage effect occurs because, as the wavenumber of the short wavelets is 
increased by the long-wave convergence, the group velocity may initially decrease 
but ultimately it increases again as the wavelength shortens until it is sufficient to 
overcome the advection towards the long-wave crest. 
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If the energy density of ‘freely propagating’ short waves ahead of a capillary 

(3.2) 

blockage point is non-zero, the constancy of action flux 

(u(s)  - cu cos a) E/CT = const. 

indicates that E becomes indefinitely large as cuu(s) - cosu-t 0. Possibly in a wind- 
wave tank, the accumulation of short-wave energy just in advance of a steep primary 
wave may provide the unsteadiness to provoke breaking. 

The wavenumber at  the crest of the short component just blocked is such that 

Longer wavelets will escape blockage. The shortest wave train that can continue to 
propagate past the crest has, as its wavelength at  the crest, 

9FY 
hmin = - 

2~:,*t 

- 9FY 
2(Q2 - 2gC-c:,) ’ 

- 

from (2.1).  This can be expressed alternatively in terms of the wavelength A of the 
dominant wave and the ratio of its crest height &to  the maximum height & of a wave 
of limiting form with the same wavelength: 

(3.4) AIniIlA = 9+(y/g) ( 1  - C-c/cm)-l. 

For example; if [,/c,, c 0-5 for a dominant wave with wavelength 10cm, the 
shortest freely travelling wave has a length of about 1.5 cm at the crest; if A = 1 m, 
hmln = 0.15 cm. Capillary blockage is clearly not a significant field phenomenon, 
though in laboratory wind-wave tanks, particularly at short fetches, it  can significantly 
restrict the range of ‘freely travelling ’ waves. 

This analysis becomes inaccurate when the perturbation wavelength is a significant 
fraction of that of the basic wave. It would be very interesting to extend Longuet- 
Higgins’ ( 1  978) calculations on super-harmonic perturbations of short gravity waves 
in which surface tension effects are included. The analysis given here does, however, 
provide grounds for believing that finite-amplitude wave systems at  these scales 
are indeed much less dispersive than they are at larger scales. 

! 

4. The spectral signatures of short-wave trains 
A train of short gravity waves interacting with a long wave has an amplitude, a local 

wavenumber, an intrinsic and apparent frequency, all of which vary with respect to 
phase of the long wave. How do the usual spectral measures of the waves reflect these 
variations ? 

The simplest to calculate is the wavenumber spectrum. In a frame of reference at 
rest, the short-wave train is 

g = a(z - Ct) exp ix, (4.1) 

where the local amplitude a = a,{E(s)/g(s) E,}# 
16 

(4.2) 
F L M  107 
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FIGURE 8. The trajectoriee of local wavenumber with respect to phase of a long wave. 

(periodic in x with the long wavelength A) is specified as a function of s by (2.14) and 
(2.12). The distance s along the long-wave profile is, in terms of x, 

dxlds = cose, (4.3) 

where tan 0 is the local surface slope. The phase function x specifies the local wave- 
number along the surface k(s) = axl8.s and also in the x, y plane, 

k, = ax/ax = k(s)/cose and k, = ax/@. (4.4) 

The local wave amplitude a is independent of y and the periodicity in y, k,, i sun- 
affected by the long-wave distortion, so that it is sufficient to consider the Foiirier 
representation of (4.1) with respect to k,. For the sake of simplicity, consider g to be 
periodic in x with wavelength A; its Fourier coefficient 

& ( K )  = A-1 a(x - Ct) exp ix exp ( - ~ K X )  dx, so  ̂
A 

0 
= A-lJ a(x - Ct)  exp i# dx, 

where q5 = x - KX. When K is large, this integral can be evaluated by the method of 
stationary phase (Lighthill 1978). Significant contributions arise when 

a@X = kx-K = 0; (4.5) 

if K lies between the maximum short wavenumber (at the long-wave crests) and the 
minimum (in the troughs), there are two phase points xl, x2 illustrated in figure 8 
satisfying (4.5) with opposite slope of +/ax = k,, i.e. opposite signs of a24/ax2, but 
with the same amplitude a. Consequently 

t 
a ( K )  - *) ["-I {exp i(xl - KX1 + in) + exp i(x2 - KX2- in)}. (4.6) 

A akxlax XI 

The Fourier coefficient of wavenumber K then depends, naturally, on the amplitude 
of the wave train at the phase point where the local wavenumber is equal to K ,  and on 
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the rate at which this local wavenumber varies along the profile. The spectral density 
Y(K)  is given by 

y ( K ) d K  = (izr2*), 

where d K  = 2n/A and the average ( ) is over random phases of xl, x2 for fixed K (and 
therefore fixed xl, x2). Consequently 

The mean-square surface displacement of the short waves is recovered by integration 
of (4.7) over K :  

- 
= @*), 

where the overbar indicates the average over the profile of the long waves. 
The expression (4.7) becomes inaccurate when the wavenumber corresponds to the 

maximum at the long-wave crests or to the minimum at the troughs, presenting a 
singularity, though integrable, at  these points. To evaluate the spectral density for 
these wavenumbers requires the modification to the method of stationary phase 
appropriate to caustics (Lighthill 1978, pp. 386-91) in which both the first and second 
derivatives of $ vanish. At a crest 

2nac - [ - ia2kx/ax2],*Ai (2) expi(xc- KZJ,  
A a ( K )  

where z = ( K  - k,) [ - ga2kx/a~2]-t, (4.9) 

and a, is the short-wave amplitude at the long-wave crest. A similar expression holds 
when K corresponds to the wavenumber at the trough but without the negative sign 
before a2k,/ax2, which is positive in the trough. The spectral density near the wave- 
number at the long-wave crests is therefore 

(4.10) 

When the wavenumber K becomes greater than the maximum wavenumber in the 
short-wave train at  the long-wave crests, z > 0 and the Airy function decreases mono- 
tonically and exponentially. The singularity in (4.7) when ak,/ax = 0 at z = 0 no 
longer persists in (4.9) since Ai (0) = 0.355. The spectral densities at  the maximum and 
minimum wavenumbers are not, however, symmetrical, since, as was shown in $2,  
(aa*), is greater than the corresponding value in the troughs by a factor that increases 
substantially with the long-wave slope. A wave train, with ‘mean’ wavenumber k, 
at the points where the long-wave profile intersects mean water level, thus gives a 
spectral signature in the wavenumber plane as illustrated in figure 9, distributed over a 

I 6-2 
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FIGUF~E 9. The spectral signature on the wavenumber plane of a wave train with mean 
wavenumber k,, distorted by a long wave travelling in the 1-direction. 

range of wavenumbers in the 1-direction, between k,,, and k,,". Maximum contri- 
butions are found at the two ends of the range, the high wavenumber peak being 
dominant by a factor specified by (2.13)-(2.15). 

These calculations have, of course, assumed that the long-wave train is uniform. 
Under natural conditions, the dominant waves in the ocean are far from uniform and, if 
short-wave spectra are measured from samples that include many dominant waves, 
the peaks associated with short-wave trains will be smoothed and distributed over a 
range determined by the height of the highest individual wave. 

The spectral signature in frequency of a group of short waves, measured at a fixed 
location as the long and short waves move by, is similarly distributed over a range of 
frequencies, but this time as a result of two effects - the variations in intrinsic fre- 
quency u with respect to phase of the long wave (asecond-order modification), together 
with the 'Doppler effect' associated with the convection of the short waves by the 
orbital velocities of the long ones. The time derivative of the phase function x in (4.1) 
is the apparent frequency - ax/at = + kxu0, (4.11) 

where k, = k(s)  cos alcos 0 and uo is the horizontal component of the long-wave orbital 
velocity at the surface measured at a fixed reference point as the waves go by. The 
quantities u, kz and uo are all functions of x - Ct. In  terms of u(s), uo = C - u(s) cos 0 
so that 

k(s)  cos a (C - u(s) cos 8))  - ax/at = + cos 

= u - k(s)  u(8) cos a + kx C, 

= -no+ kxC, (4.12) 

from (2.8). At first sight, this last expression is rather surprising. Since no and C are 
constant, it  asserts that the variations in apparent frequency are the same a8 if the 
short wave with a varying wavenumber were moving with the speed C of the long wave. 
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FIGURE 10. The frequency trajectory of short waves superimposed on long. 

The correctness of the result is, however, evident. The apparent frequency no is 
constant in the frame of reference moving with speed C and the last term in (4.12) is 
simply the Doppler shift modification associated with the change of reference frame, 
as illustrated in figure 10. 

The Fourier component of the surface displacement at a certain frequency v is 

(4.13) 

where T is the long-wave period and 9 = x + vt. As before, when v is large, the integral 
can beevaluated by stationary phase. When v lies between the maximum and minimum 
of the apparent frequency - ax/at, 

a(v) * aO [ 2n ]A {exp i(xl + vt, + an) + exp i (x ,  + vt, - an)}, (4.14) 
T Czakz/ax 

since - Px/atZ = Cakz/at = CZakJax from (4.12), k, being a function of x -  Ct .  The 
instants t ,  and t ,  are the points of stationary phase, when v is equal to the apparent 
frequency of the short-wave group; at these instants x = x1,xe respectively. The 
spectral density @ ( v )  is such that 

@(v)dv  = (&a*), 

(4.15) 
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since A = CT. A comparison between this result and (4.7) shows that 

when v =  KC-^,,. 

frequency found at the long-wave crest since here (aa*) is a maximum while 

T ( K )  = c@(V) (4.16) 

The spectral density of the signature of the short waves is greatest at the apparent 

akz/ax -+ o. 
Near this frequency, a stationary phase calculation similar to that leading to (4.8) 
gives 

where 

(4.17) 

4 = - c aek/atz = - c= aZkpX2, 
since k = k ( x - C t ) .  Both 9' and 9" vanish at the crest. The spectral density near this 
frequency 

(4.18) 

Comparison with (4.10) shows that the simple relation (4.16) continues to hold. The 
spectral signature of the wave train is thus distributed over a range of frequencies 
(Ak) C, where Ak is the difference between the maximum wavenumber at the crest and 
the minimum in the trough and C is the long-wave speed. Note that, if CAk is 
sufficiently large, that is, for sufficiently short wavelets on a given swell, the wavelets 
may be convected backwards in the troughs of the swell so that the frequency range 
extends below zero and in a measurement appears to  be 'folded back' upon n > 0. 

When the slope of the dominant wave is small, the range of frequencies swept out by 
the wavelets can be calculated simply. It was pointed out in $2 that the intrinsic 
frequency a vanes with respect to phase of the swell by the fraction (AK)2,  which we 
neglect when AK 4 1 .  From (4.1 1)  the measured frequency at the swell crest is 

f, = a+ kuo, (4.19) 

when a = 0, where k is the wavenumber there, or 

k = d/gL = ( a 2 / g )  (1 + A K ) .  

Referred to the frequency N of the swell, 

(4.20) 

since uo = A K C  = AKg/N.  Note that, although AKis small, ( C / N ) ~  % 1 and for high- 
frequency wavelets ( a / N ) A K  may be of order unity or greater. Similarly, the 
measured frequency in the swell troughs is 

(4.21) 
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FIGURE 11. Apparent frequencies f, a t  crest and trough, of wave trains with intrinsic 
frequency u for various slopea AK of a long wave or swell with frequency N. 

These frequency ranges are illustrated in figure 1 1 for various small values of A K. For 
a particular value of c / N  and long-wave slope, the range of apparent frequencies lies 
between the two curves with the slope indicated - when a / N  = 6, say, for a swell 
slope of 0.05 , f /N ranges from 4.2 to 7.8. When a / N  > [AK( 1 -AK)]- l ,  the frequency 
changes sign in the troughs - the short waves are unable to progress forwards against 
the adverse orbital velocity of the swells and are swept back as the troughs move by. 

5. The measurement of ‘phase velocity’ of short waves by filteredspace-time 
correlations 
As described in the introduction to this paper, attempts have been made to measure 

the phme velocity of short gravity waves by measuring the surface displacement at  
two neighbouring points, filtering the signals at a given frequency v and measuring the 
phase difference, or the time delay for maximum correlation. However, with the 
modulations in measured frequency of a wave train in the presence of a dominant 
wave, it is not at all clear that this procedure does in fact measure the phase velocity 
of the train. 
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FIGURE 12. Frequency trajectories of a short wave train 
measured at two neighbouring points. 

The field situation generally involves an ensemble of short waves but, for the 
moment, consider a single train as in the previous sections, with observations at two 
points separated by a distance Ax. The frequency trajectories in time of the two 
records are as shown in figure 12, the trajectory for the second measurement position 
being displaced in time by the amount AxlC.  For the measurement at  point 1, the 
filtered signal is, from (4.14), 

together with the contribution from the second crossing. From point 2, the signal is 
identical in amplitude, but the phase is that appropriate to the instant t i .  If a time 
delay 7 is introduced into the first signal and it is multiplied by the second, the result is 

But x' - x = k, Ax - %(ti - t l )  where n = u, so that the time delay for maximum corre- 
lation is indeed (k,/u)Ax and the measurement does give the projection of the phase 
velocity in the direction of Ax in those parts of the long-wave cycle at  which the 
frequency of the wave train is equal to the frequency of filtering. 

However, as we have seen, the largest amplitude of the filtered signals occurs when v 
corresponds to the wavelet frequency a t  the long-wave crest, with a secondary maxi- 
mum at the trough. In the former case, from (4.17), the filtered signal is 

2nac 
ii(v)e-i"t = - T [$'"];iAi [$'/?&''']!e~pi($~- ut). (5.3) 

If the signal from a neighbouring probe is filtered at the same frequency and a time 
delay is introduced, the mean product of the two is, as before, a maximum when the 
time delay is that required for propagation between the two points. At a crest, then, 
the propagation velocity measured is the sum of the orbital speed of the dominant wave 
and the projection of the intrinsic phase velocity a l k ,  along the line of separation. 
At the trough, one measures the difference between these two. 
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Next, suppose that we have groups of short waves with different intrinsic frequencies 
u scattered randomly over the dominant wave or swell, and that we examine the 
characteristics of the short-wave field at a fixed frequency v.  In  figure 12, then, for a 
given long-wave slope, the range of intrinsic frequncies u / N  sampled lies along the 
horizontal interval between the curves appropriate to that slope. An interesting 
property of figure 1 1  is, however, that f / N  in the troughs hrts a maximum of 

[4AK(l-AK)I- l  when u / N  = [2AK(l-AK)I- l  

from ( 4 . 2 1 ) ;  at higher intrinsic frequencies than this, the apparent frequency reduces. 
Consequently, if our sampling frequency as a multiple of the dominant wave frequency 
v / N  = f / N  > [4AK( 1 - AK)]- l ,  then there are no contributions from the troughs of the 
dominant wave8 by any short-wave train, no matter what the intrimic frequency.7 For a 
dominant wave slope as small as 0.1, this already occurs when the sampling frequency 
is more than 2.8 times the dominant frequency. The principal stationary phase 
contributions are then derived from the crests of the dominant wave only and the 
measured propagation speed is the sum of the intrinsic propagation speed u/kc and 
the orbital speed of the swell, or, from (4 .19) ,  the apparent phase speed 

This can be expressed in terms of v / N  and the dominant wave slope AK. From (4.20), 

u-' = ( 2 ~ ) - ' {  1 + [ 1 + 4AK( 1 + A K )  v / N ] t }  

at the crest, and since g: = g( 1 - A K )  = NC( 1 - A K ) ,  u,, = CAK,  the apparent phase 
speed of the wavelets is 

= C ( A K + ( 2 v / N ) - l { l + [ l  + ~ A K ( ~ + A K ) v / N ] ~ } )  ( 5 . 5 )  

approaching (from above) a constant, the orbital speed of the long waves, as v / N  
increases. 

If the slope of the swell is sufficiently small that [4AK( 1 - AK)]- l  > v / N  (which 
itself must be greater than about 3 for accuracy of the two-scale analysis) stationary 
phase secondary maxima at  the frequency v will be detected in the troughs, in fact 
from wave trains with two different intrinsic frequencies. From ( 4 . 2 1 ) ,  when A K  is 
small, these are 

u / N  = (2AK)- ' { l& [ 1 - ( 4 v / N ) A K ( l  - A K ) ] # } .  

If the individual wave groups are saturated at the long-wave crests, their energy 
density there decreases rapidly with increasing u (approximately as r6); it is further 
decreased by the straining motion between a saturated crest and an unsaturated trough. 
It is evident from figure 11 that, when v / N  is rather less than the maximum of f / N  
for a given slope, the intrinsic frequencies sampled in the troughs are already much 
greater than the one sampled at  the crests, and their relative energy densities insignifi- 
cant unless A K  is very close to zero. Consequently, the expressions (5 .4)  and ( 5 . 5 )  for 
the apparent phase speed should continue to hold for observation frequencies 
somewhat lower than the value [4AK( 1 - AK)]- l  times the dominant wave frequency. 

t Except whenf < 0, corresponding to very short waves (high u/N) of small amplitude being 
carried in the opposite direction. 
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6. Concluding remarks 
In the preceding sections, we have shown that there appears to be no dynamical 

reason why a dominant wave train, short of breaking, should suppress freely propa- 
gating gravity waves superimposed upon it. The short waves are distorted and con- 
vected by the dominant wave and exchange energy with it, but they continue to 
propagate a t  a phase speed that depends upon their own intrinsic frequency and on 
their location with respect to the dominant wave. As the slope of the dominant wave 
increases, so does its harmonic content - this of course propagates at the dominant 
wave speed. 

If the record of surface displacement a t  a point is filtered at  a fixed frequency v 
significantly above that of the spectral peak, the resulting signal is concentrated at the 
long-wave crests for three separate reasons. First is the dominance of the stationary 
phase contribution from these regions. Secondly, the wavelets in an active wind- 
generated sea are generally locally saturated near the crests, while the divergence in 
the long-wave flow field may reduce the wavelet amplitude below the saturation limit 
at other points of the long-wave profile. Thirdly, and probably most important, the 
wavelets at the crest with apparent frequency v have the lowest intrinsic frequency u 
of all those that appear with apparent frequency v, and the spectral densities are 
weighted towards low u by a factor of approximately r5. These three effects in 
combination provide the expectation that such a filtered signal will exhibit a pro- 
nounced ‘groupiness’ a t  the long-wave crests that is, in a sense, more apparent than 
real - much larger, for instance, than the groupiness that would be observed if we 
could measure at a fixed cr rather than a fixed v. 

The combination of effects also implies that measurement of the phase speed from 
filtered signals will also be strongly dominated by conditions at the long-wave crests, 
and the phase speed measured is the sum of the orbital speed of the long waves and the 
propagation speed at this apparent frequency at  the long-wave crest. These results 
are consistent with the measurements of Ramamonjiarisoa & Giovanangeli (1978) in 
the field which show at high frequencies an apparent phase speed independent of 
filtering frequency. The measurements therefore do not impiy that the short compo- 
nents of a wind-generated wave field are non-dispersive; they are in fact a direct 
consequence of their dispersive nature combined with their interaction with the 
longer, dominant waves. They offer no support to the conjecture of Lake & Yuen 
(1978) described in the introduction. 

In laboratory wind-wave tunnels, the situation is accentuated even further. In 
addition to the measurement bias in favour of the long-wave crests, the relatively short, 
steep waves generated in these facilities are richer in harmonics that do propagate 
with the long-wave speed. Under relatively short-fetch, high-wind conditions, many 
of the wave crests are breaking and this will suppress slower wavelets that may be 
present. Furthermore, the phenomenon of capillary blockage a t  very high frequencies 
suppresses freely travelling capillary-gravity waves even without breaking. These 
three additional effects imply that the waves generated under such conditions are 
much less dispersive than under most natural conditions in which the slope of the 
dominant wave is less; the measurement bias implies that filtered space-time cor- 
relation measurements will make the waves appear less dispersive still. The striking 
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measurements of Ramamonjiarisoa shown in figure 1 are then perhaps less surprising 
than they at  first appear. 

This work was stimulated by a visit to the Institute de MBcanique Statistique de la 
Turbulence at  Marseille in the spring of 1979 and it is a pleasure to acknowledge the 
gracious hospitality of the members of the Institute during that time. It was completed 
in Baltimore with the support of the Office of Naval Research under contract 
NO001 4-7 6-C-0 184. 
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